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Abstract
If the three moments of inertia are distinct, the solution to the Euler
equations for the free rigid body is given in terms of Jacobi elliptic functions.
Using the arithmetic–geometric mean algorithm (Abramowitz and Stegun
1992 Handbook of Mathematical Functions with Formulas, Graphs, and
Mathematical Tables (New York: Dover)), these functions can be calculated
efficiently and accurately. Compared to standard numerical ODE and Lie–
Poisson solvers, the overall approach yields a faster and more accurate
numerical solution to the Euler equations. This approach is designed for mass
asymmetric rigid bodies. In the case of symmetric bodies, the exact solution
is available in terms of trigonometric functions, see Dullweber et al (1997
J. Chem. Phys. 107 5840–51), Reich (1996 Fields Inst. Commun. 10 181–91)
and Benettin et al (2001 SIAM J. Sci. Comp. 23 1189–203) for details. In
this paper, we consider the case of asymmetric rigid bodies subject to external
forces. We consider a strategy similar to the symplectic splitting method
proposed in Reich (1996 Fields Inst. Commun. 10 181–91) and Dullweber
et al (1997 J. Chem. Phys. 107 5840–51). The method proposed here is
time-symmetric. We decompose the vector field of our problem into a free
rigid body (FRB) problem and another completely integrable vector field. The
FRB problem consists of the Euler equations and a differential equation for
the 3 × 3 orientation matrix. The Euler equations are integrated exactly while
the matrix equation is approximated using a truncated Magnus series. In our
experiments, we observe that the overall numerical solution benefits greatly
from the very accurate solution of the Euler equations. We apply the method
to the heavy top and the simulation of artificial satellite attitude dynamics.
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1. Introduction

We consider the Euler equations describing the motion of a free (FRB) rigid body

I1ω̇1 = (I2 − I3)ω2ω3, I2ω̇2 = (I3 − I1)ω3ω1, I3ω̇3 = (I1 − I2)ω1ω2, (1)

where I1, I2 and I3 are the principal moments of inertia. These equations are completely
integrable. Energy and angular momentum are preserved along the solution; this means that
for all times the two quantities

E = I1ω
2
1 + I2ω

2
2 + I3ω

2
3, G2 = I 2

1 ω2
1 + I 2

2 ω2
2 + I 2

3 ω2
3 (2)

are constant (here E is the energy and G2 is the total angular momentum). There is also a non-
canonical symplectic structure (Lie–Poisson structure) preserved by the flow of (1) [13]. By
using the two constants of motion it is possible to derive the general solution of the equations
expressed in terms of Jacobi elliptic functions.

The expression of the exact general solution of the Euler equations can be turned into a
numerical method by using efficient numerical approximations of the Jacobi elliptic functions.
To impose the initial conditions a constant τ , used to translate time, must be computed prior
to the integration, see section 3 for details. In this paper, we show that this approach is very
competitive and discuss the details of its further use in problems of rigid bodies subject to
external forces. We also refer to [3, 16] for related literature.

The simulation of rigid body motion is interesting for applications in robotics, structural
mechanics, molecular dynamics and also nanotechnology, [8, 10, 19]. Often stable integration
over very long times is required in the simulations. It has been shown that the preservation
of geometric features, as for example symplecticity and time symmetry of the flow for
Hamiltonian systems, can be crucial for the performance of numerical integrators in long-
time simulations [9, 10]. Therefore, in some cases geometric integrators are preferred to other
existing sophisticated algorithms for multi-body systems.

Lie–Poisson integration methods for the Euler equations have been constructed by various
authors [7, 12, 15, 17], see also [10] and references therein. Many of these methods cannot
be straightforwardly generalized to the broader class of noncanonical Hamiltonian problems;
thus their use is limited to the numerical approximation of the Euler equations. However, some
of these integrators have successfully been applied in the simulation of rigid body dynamics
and of torqued rigid bodies. This is for instance the case in [5, 18].

For the Euler equations, in [14, 18], the right-hand side of (1) is split into the following
three terms:

f1(ω) =

 0

I3ω3ω1

−I2ω1ω2


 , f2(ω) =


−I3ω2ω3

0
I1ω1ω2


 , f3(ω) =


 I2ω2ω3

−I1ω3ω1

0


 . (3)

Each of the three vector fields is Hamiltonian with respect to the rigid body Poisson bracket
[13, p 8], and defines a differential equation which is easy to integrate exactly. The appropriate
composition of the corresponding flows produces a (non-canonical) symplectic approximation
of the problem. There is numerical evidence showing that this Lie–Poisson method is very
competitive compared to most of the known and previously proposed integration strategies
for the Euler equations [4, 14, 15]. We use this splitting for comparison in our numerical
experiments. The generalization to the case of a six-dimensional system modelling torqued
rigid bodies, in [18], is achieved by considering a splitting of the Hamiltonian of the problem
in four parts, three of them give rise to vector fields analogous to f1, f2 and f3, the last vector
field is completely integrable and arises from the potential energy yielding the torque. We will
briefly recall this approach in section 4.
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The method proposed for torqued rigid bodies in the present paper is time-symmetric,
and related to the approach of [5, 18]. We decompose the vector field of our problem into a
FRB problem and another completely integrable vector field. The FRB problem is given by
the three Euler equations and the differential equations for the orientation matrix. This matrix
represents the rotation which the body undergoes with respect to a reference configuration. The
numerical approximation of the Euler equations is performed to machine accuracy, while the
orientation matrix is approximated by the exponential of a truncated Magnus series (achieving
order 2 or 4). The overall splitting is symmetric, but not symplectic. However, in many of the
considered numerical experiments the new method presents better conservation of energy and
better behaviour of the numerical solution then the symplectic integrator of [5, 18].

Accurate approximations preserving energy, momentum and the Lie–Poisson structure of
the Euler equations have been recently addressed in [15]. In this work, the authors propose
a new implementation of the discrete Moser–Veselov (DMV) algorithm of [17]. By applying
an appropriate rescaling of the initial condition, they also obtain new DMV methods of orders
4 and 6. The rescaling needs to be performed just once, at the beginning of the integration.
The higher order methods present therefore virtually the same computational cost as the
second-order DMV algorithm.

Our numerical tests show that using the exact solution and computing the Jacobi elliptic
functions to machine accuracy leads to a very competitive method for the solution of the
Euler equations, also compared to the improved DMV approach. Both approaches require
the computation of some quantities prior to the time stepping, the rescaling factors for the
DMV, and the constants for imposing the initial condition in the approach of Jacobi elliptic
functions. This implies increased computational cost when the methods are used within
a splitting technique for torqued rigid bodies. Our experiments show that the symmetric
splitting method proposed in the present paper remains competitive also in the case of torqued
rigid bodies.

The outline of the paper is as follows. The new method is presented in section 2.
Some technical issues for the implementation of this approach are discussed in section 3. In
section 4, we report some numerical experiments comparing the proposed approach to the
DMV approach of [15] and the symplectic splitting of [5, 18].

2. A symmetric splitting method for torqued rigid bodies

Efficient integrators for the free rigid body can be used in connection with splitting methods
in the numerical approximation of more complex rigid body dynamics. The method presented
here can also be applied to problems of interacting rigid bodies, rigid body linked by constrains,
etc [5, 18].

The Hamiltonian function for our problem is

H = H(π,Q) = 1

2

(
π2

1

I1
+

π2
2

I2
+

π2
3

I3

)
+ V (Q),

where π = (I1ω1, I2ω2, I3ω3)
T is the angular momentum and Q is the rotation matrix which

describes the orientation of the body.
The Hamiltonian H gives rise to the following system of ordinary differential equations,

π̇ = skew(T −1π)π + f (Q), (4)

Q̇ = skew(T −1π)Q, (5)
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where

skew(v) =

 0 v3 −v2

−v3 0 v1

v2 −v1 0


 ,

f depends on the potential energy V (Q) and

T =

I1 0 0

0 I2 0
0 0 I3




is the principal inertia tensor. To derive a symmetric splitting method for the above equations,
we start by applying a Störmer/Verlet splitting,

H = H1 + H2, H2 = V (Q),

and H1 = H−H2 is the kinetic energy. The system of differential equations is then split into
the two systems,

S1 =
{
π̇ = skew(T −1π)π,

Q̇ = skew(T −1π)Q,
(6)

corresponding to the kinetic part, and

S2 =
{
π̇ = f (Q),

Q̇ = 0,
(7)

corresponding to the potential part. The Störmer/Verlet scheme is then

(π,Q)(j+1) = ϕ
[S2]
h/2 ◦ ϕ

[S1]
h ◦ ϕ

[S2]
h/2 ((π,Q)(j)), j = 0, 1, . . . ,

where ϕ
[S1]
h and ϕ

[S2]
h represent the exact flows of S1 and S2, respectively. It is well known that

this scheme is symplectic. In the case of symmetric rigid bodies, the exact flow ϕ
[S1]
h can be

expressed in terms of trigonometric functions, see [2, 5, 18] for details. This is not true in the
asymmetric case. Our splitting is obtained substituting ϕ

[S1]
h with a computationally efficient

time-symmetric approximation of the flow of S1.
The system S1 is simply a FRB problem. Rewriting the first part of system (6) in terms

of the angular velocity, ω = T −1π one obtains the Euler equations (1). We can now compute
π(t) to machine accuracy, for any t and any initial value, by using the exact solution of the Euler
equations, and computing the Jacobi elliptic functions by the method of arithmetic–geometric
mean, see section 3. Hence the update of π on the interval [tj , tj+1] is

π(j+1) = S(π(j), h, tj ), (8)

and is exact. The operator S : R3 × R × R → R3 maps any initial value π(tj ) = v ∈ R3 to
the solution, π(tj+1) = S(v, h, tj ), of the Euler equations at time tj+1 = tj + h.

The approximation of the orientation matrix Q(j+1) in tj+1 is obtained integrating
numerically on the interval [tj , tj+1] the equation

Q̇ = skew(T −1π)Q, Q(tj ) = Q(j),

using a symmetric Magnus method (of order 2 or 4) [9]. For order 2, this results in the
following expression:

Q(j+1) = exp(h skew(T −1π(j+1/2)))Q(j), (9)

where π(j+1/2) = π(tj + h/2) is obtained as a by-product of the update π(j+1) in (8) with little
extra cost (see section 3 for details). The exponential in (9) is computed by Rodrigues formula
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[13, p 291]. Thus, using (8) and (9), the flow ϕ
[S1]
h is approximated by a second-order flow

φ
[S1]
h .

Given f (Qj) the flow ϕ
[S2]
h can be calculated exactly,

π(j+1) = π(j) + hf (Q(j)), Q(j+1) = Q(j),

and the updating (second-order) scheme is finally

(π(j+1),Q(j+1)) = ϕ
[S2]
h/2 ◦ φ

[S1]
h ◦ ϕ

[S2]
h/2 ((π(j),Q(j))),

where

φ
[S1]
h ((π(j),Q(j))) =

{
π(j+1) = S(π(j), h, tj ),

Q(j+1) = exp(h skew(T −1π(j+1/2)))Q(j),
(10)

ϕ
[S2]
h ((π(j),Q(j))) =

{
π(j+1) = π(j) + hf (Q(j)),

Q(j+1) = Q(j).
(11)

It is easy to verify that φ
[S1]
h φ

[S1]
−h = I and the overall splitting method has the time-symmetry

property

�h�−h = 1, �h = ϕ
[S2]
h/2 ◦ φ

[S1]
h ◦ ϕ

[S2]
h/2 .

Note that if we increase the number of terms included in the truncated Magnus series and
obtain higher order in the approximation of ϕ[S1], our scheme will accordingly be a more
accurate approximation of the Störmer/Verlet splitting.

3. Implementation issues

Consider the values

a2
1 = 2EI3 − G2, a2

3 = G2 − 2EI1,

b2
1 = I2(I3 − I2), b2

3 = I2(I2 − I1),
(12)

where G and E are given in (2) and I1, I2, I3 are the principal moments of inertia in the Euler
equations (1). Assume b3/a3 � b1/a1 (we will have a similar situation if b3/a3 � b1/a1), the
solutions of the Euler equations are

ω1 = a1 cn u√
I1(I3 − I1)

, ω2 = a1 sn u

b1
, ω3 = a3 dn u√

I3(I3 − I1)
, (13)

where cn, sn and dn are the Jacobi elliptic functions defined by

cn u = cos ϕ, sn u = sin ϕ, dn u =
√

1 − k2 sin2 ϕ, (14)

with u(t) = λ(t − τ), λ = b1a3/(I2
√

I1I3) and τ is a constant of integration. Here the
amplitude ϕ is given implicitly as the solution of the equation

F(ϕ|k2) = u(t), u(t) = λ(t − τ), (15)

where

F(ϕ|k2) :=
∫ ϕ

0

dθ√
1 − k2 sin2 θ

is an elliptic integral of the first kind with modulus k = b3a1/(b1a3). Assume ω(j) = T −1π(j)

is the approximation of the angular velocity produced by the symmetric splitting method at step
j . At the next integration step we have to calculate the exact solution of the Euler equations,
ω(t), at t = tj + h and t = tj + cih, ci ∈ (0, 1), and i = 1, . . . , s, taking ω(tj ) = ω(j) as
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an initial condition. In the case we integrate the equations for the orientation matrix with a
Magnus method of order 2 we have s = 1 and c1 = 1/2, and for order 4 we have s = 2,

c1,2 = 1/2 ± √
3/6.

The first task of the process is to determine τ to satisfy the initial condition ω(tj ) = ω(j).
To this end, we first find the amplitude ϕ(j) ∈ [0, 2π ], which is uniquely determined from the
equations

ω1(tj ) = a1 cos ϕ(j)

√
I1(I3 − I1)

, ω2(tj ) = a1 sin ϕ(j)

b1
.

Furthermore, from the sign of ω3(tj ),

ω3(tj ) = a3

√
1 − k2 sin2 ϕ(j)

√
I3(I3 − I1)

,

we determine the sign of the constants a3 and λ. Now from (15) we get

τ = tj − 1

λ
F(ϕ(j)|k2), (16)

where

F(ϕ(j)|k2) =
∫ ϕ(j)

0

dθ√
1 − k2 sin2 θ

. (17)

The latter integral can be computed to the desired accuracy using the method of arithmetic–
geometric mean of [1], briefly described below. We performed the numerical tests in MATLAB.
To the best of our knowledge, there is no built-in routine in MATLAB evaluating the integral
(17) for arbitrary values of ϕ(j). The procedure we implemented is analogous to that used in
the MATLAB function ellipke for computing the complete elliptic integrals of the first kind
(F (π/2|k2)).

Consider the sequence
{
ϕ

(j)
n

}
n=0,1,...

, ϕ
(j)

n+1 > ϕ
(j)
n defined by

tan(ϕn+1 − ϕn) = bn

an

tan ϕn, ϕ0 = ϕ(j),

where an, bn are given by the arithmetic–geometric mean sequence [1], i.e.

an+1 = an + bn

2
, bn+1 =

√
anbn, cn+1 = an − bn

2
. (18)

Taking the initial values

a0 = 1, b0 =
√

1 − k2, c0 = k,

one can show that

F(ϕ0|k2) = lim
n→∞

ϕn

2nan

, ϕ0 = ϕ(j). (19)

The iteration stops when n = N and cN in (18) is less than tolerated error. As the arithmetic-
geometric mean sequence, (18), converges quadratically, one obtains accurate approximations
of F(ϕ(j)|k2) in very few recursion steps. In our implementation we terminate the iteration
when cN is less than machine epsilon.

From (16) we easily obtain τ . At this point to find the solution of the Euler equations at
the desired time values we can use the built-in MATLAB function ellipj, with input

[λ(tj + c1h − τ), . . . , λ(tj + csh − τ), λ(tj+1 − τ)]T .

We obtain in output the corresponding values of cn, sn, dn and after appropriate rescaling (13),
we obtain the values of the solution at tj + c1h, . . . , tj + csh, tj+1.
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The MATLAB function ellipj is based on a similar algorithm as that described above.
In our implementation we reuse the arithmetic–geometric mean sequence obtained in the
computation of τ .

Note that ϕ, from relation (17), can be found explicitly for the special case k2 = 1 or
k2 = 0.

4. Numerical experiments

The second-order symmetric splitting method proposed in this paper is denoted in the following
by SEJ and compared with the symplectic method of [5, 18] which we denote in short by MR.
We denote with SEJ4 the second-order symmetric splitting method where the Magnus method
of order 4 in the integration of (6) is used. The approach for solving the Euler equations is also
compared with the discrete Moser–Veselov methods of [15] (DMV). The symplectic method
MR is based on a splitting of the Hamiltonian H into four parts:

H̃1 = π2
1

2I1
, H̃2 = π2

2

2I2
, H̃3 = π2

3

2I3
, H̃4 = V (Q).

Each of the corresponding Hamiltonian vector fields can be integrated exactly (H̃1, H̃2, H̃3

correspond to the vector fields (3)), the symmetric composition of the flows gives rise to the
approximation scheme

(π,Q)(j+1) = �M((π,Q)(j)),

where

�M = ϕ4,h/2 ◦ �T,h ◦ ϕ4,h/2.

Here

�T,h = ϕ1,h/2 ◦ ϕ2,h/2 ◦ ϕ3,h ◦ ϕ2,h/2 ◦ ϕ1,h/2

is the contribution from the kinetic parts, H̃1, H̃2 and H̃3. The flows of the kinetic parts
correspond to elementary rotations in R3. For example for H1,

ϕ1,h((π,Q)(j)) =
{

π(j+1) = Rx(h)π(j),

Q(j+1) = Rx(h)Q(j),

where

Rx(h) =

1 0 0

0 cos(C(j)h) sin(C(j)h)

0 −sin(C(j)h) cos(C(j)h)


 ,

and

C(j) = π
(j)

1

I1
.

while the flow for H̃4 is the same as for the system S2 (5) of the previous section, i.e.
ϕ4,h = ϕ

[S2]
h .

4.1. Free rigid body experiments

In the first experiment we consider the integration of Euler’s equations. In this experiment we
perform a comparison of the use of ellipj in MATLAB for computing the exact solution of the
equations (approach here denoted with JE in the figures) with the MR and DMV methods. We
refer to [15, 17] for a detailed description of the DMV methods, and recall that the higher order
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Figure 1. Euler’s equations. Execution times (x-axis) against the norm of the global error at t = 1
(y-axis). Integration on the interval [0, 1] with different step sizes. The methods are MR of orders 2
and 4, DMV of orders 2, 4 and 6, and the method JE based on the accurate computation of the Jacobi
elliptic functions using ellipj in MATLAB. The results are the average over 200 experiments. The
initial condition is π0 = [−1, 0, 2]T . The principal moments of inertia are I1 = 5, I2 = 4, I3 = 3.

DVM are obtained by computing an appropriate rescaling of the initial condition. In figure 1
we plot on the x-axis the execution times employed by the methods to perform the integration
on the interval [0, 1], for different choices of the step size, h = 1/(2k) and k = 2, . . . , 6.
On the y-axis we report the corresponding values of the 2-norm of the global error. In all
the experiments the reference solution for computing the global error is obtained using the
built-in function of MATLAB, ode45, setting the absolute and relative tolerance equal to 10−14.
The MR method in this case involves the computation of the three flows corresponding to the
Hamiltonians H̃1, H̃2, H̃3 only.

The JE approach produces, as expected, a very accurate solution of the problem, the
error is of the size of 10−14 and is independent of the step size of integration. The MR and
DMV methods of orders 2 and 4 perform similarly with a slight advantage for the MR in the
second-order case, and of DVM in the fourth-order case.

The execution times are computed taking an average over 200 experiments. In this
experiment the principal moments of inertia and the initial value are I1 = 5, I2 = 4, I3 = 3
and π0 = (1, 0, 2)T . The cost for computing the rescaling factors in the DMV methods and
for the computation of τ in JE are not included in this experiment. The excellent performance
of the JE approach, compared to the other considered methods, shows that the arithmetic–
geometric mean algorithm is a very efficient method for the evaluation of the Jacobi elliptic
functions.

We repeated this experiment, on the interval [0, 400] with step size h = 0.4, and
considered the energy error as the difference between the constant exact energy, given by
H, and the energy obtained from the numerical methods. For the MR method of orders 2 and
4 the energy error is oscillating near zero (the amplitude of the oscillations is about 10−3 for
order 2, and about 10−5 for the method of order 4). The DMV methods give an energy error
of the size of 10−13, and for the JE approach the energy is about 10−16.

In the second experiment we consider the integration of the FRB problem (6). In figure 2
we report the execution times (x-axis) against the norm of the global error at t = 1 (y-axis).
The integration is performed on the interval [0, 1] with different step sizes. We denote with
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MR2
MR4
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Figure 2. FRB equations (6). Execution times (x-axis) against the norm of the global error at t = 1
(y-axis). Integration on the interval [0, 1] with different step sizes. The considered methods are
MR of orders 2 (MR2) and 4 (MR4), and the methods JEM2 and JEM4 (combination of ellipj in
MATLAB with a Magnus method of order 2 or 4). The results are the average over 200 experiments.
The initial conditions are π0 = [−1, 0, 2]T , and Q0 is equal to the 3 × 3 identity matrix. The
principal moments of inertia are I1 = 5, I2 = 4, I3 = 3.

10
−2

10
−1

10
0

10
1

10
− 8

10
− 6

10
− 4

10
− 2

10
0

SEJ
SEJ4
MR

Figure 3. Heavy top. Execution times (x-axis) against the norm of the global error at t = 1
(y-axis). Integration on the interval [0, 1] with different step sizes. The results are the average over
200 experiments. We consider the symmetric splitting methods SEJ and SEJ4 and the symplectic
splitting MR. All the methods have order 2. The initial conditions are ω0 = [10, 10, 10]T , u0 =
[0, 0, 1]T . The principal moments of inertia are I1 = 1000, I2 = 5000, I3 = 6000.

JEM2 or JEM4 the methods based on the use of ellipj in MATLAB (for the solution of Euler’s
equations), combined with a Magnus method for the computation of the orientation matrix
(Magnus method of order 2 (JEM2) and order 4 (JEM4), see section 2). The comparison is
made with the MR methods of orders 2 and 4. The results are given as an average over 200
repeated experiments. The initial conditions are π0 = [−1, 0, 2]T ,Q0 is equal to the 3 × 3
identity matrix, and I1 = 5, I2 = 4, I3 = 3. Also in this case the JEM methods perform very
well.
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Figure 4. Energy error for the heavy top. Integration on the interval [0, 100], using the method
SEJ. I1 = 1000, I2 = 5000, I3 = 6000, ω0 = [10, 10, 10]T . (a) Centre of mass u, h = 0.1, SEJ.
(b) SEJ, h = 0.1. (c) Centre of mass u, h = 0.05, SEJ. (d ) SEJ, h = 0.05. (e) Centre of mass
u, h = 0.01, SEJ. ( f ) SEJ, h = 0.01.

4.2. Heavy top experiments

In figure 3 we report the results of the third experiment. We consider the integration of the
heavy top problem which corresponds to taking

V (Q) = eT
3 Qu0,
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Figure 5. Energy error for the heavy top. Integration on the interval [0, 100], using the method
MR. I1 = 1000, I2 = 5000, I3 = 6000,ω0 = [10, 10, 10]T . (a) Centre of mass u, h = 0.1, MR.
(b) MR, h = 0.1. (c) Centre of mass u, h = 0.05, MR. (d) MR, h = 0.05. (e) Centre of mass
u, h = 0.01, MR. ( f ) MR, h = 0.01.

where e3 is the third canonical vector and u0 is the initial position of the centre of mass of the
heavy top. This gives rise to a torque in (4) of the form

f (Q) =

 u2

−u1

0


 , u(t) = Q(t)u0.
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Figure 6. Energy error for the heavy top, u0 = [0, 0, 1]T . Integration on the interval
[0, 10], h = 0.01. In (a) we vary the initial angular velocity, ω0 = α[1, 2, 3]T , and let I1 = 1,
I2 = 2, I3 = 3 be fixed. In (b) we vary the principal moments of inertia, I1 = α, I2 = 2α,
I3 = 3α, and let ω0 = [1, 2, 3]T be fixed.

We use the second-order splitting methods MR and SEJ and SEJ4 on the interval [0, 1]. The
principal moments of inertia are I1 = 1000, I2 = 5000, I3 = 6000, and the initial conditions
are ω0 = (10, 10, 10)T and u0 = (0, 0, 1)T .

We first integrate on the interval [0, 1] and compare the performance of the two splitting
methods in terms of execution times against the norm of the global error, figure 3. In this case
the advantage of the SEJ4 splitting method is quite clear while MR and SEJ perform similarly.

Next we illustrate the qualitative performance of the two methods SEJ and MR. We look
at the energy error and at the numerical trajectory describing the motion of the centre of
mass, integrating on the time interval [0, 100]. The results are shown in figures 4 and 5. We
compare the results obtained by using different step sizes for MR and SEJ. For small step
sizes we expect the methods to produce similar trajectories. We would like the methods to
reproduce the correct qualitative behaviour of the solution also for bigger step sizes. For step
size h = 0.01, figures 4( f ) and 5( f ), the two methods produce trajectories such that

1

N

N∑
n=1

‖uSEJ,n − uMR,n‖ = O(10−1),

and N = 100/0.01 is the total number of steps. The energy error for SEJ is a factor 10−4

smaller than for MR. Increasing the step size to h = 0.05 and h = 0.1, the amplitude
of the oscillations in the energy error increases for both methods. Consistently for all the
experiments, SEJ has a much smaller energy error than MR, figures 4(b), (d) and ( f ), 5(b),
(d) and ( f ). For step size h = 0.1 the trajectory of the centre of mass produced by the MR
method is different from the one produced with a step size h = 0.01, figures 5(a) and (e). For
the SEJ method the numerical trajectory of the centre of mass maintains the same character
for the different step sizes h = 0.01, h = 0.05 and h = 0.1, figures 4(a), (c) and (e).

Next, we compare the energy error between the two methods for different values of the
angular velocity, figure 6(a), and the inertia tensor, figure 6(b). The initial position of the
centre of mass is u0 = (0, 0, 1). We consider the time interval [0, 10] and integrate with a
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Figure 7. Plot of Qe3 and the relative energy error for the satellite simulation. Integration on
the interval [0, 400] with h = 0.1, using the methods MR, SEJ and SEJ4 (SEJ with a Magnus
method of order 4 for the rotation matrix Q). The principal moments of inertia are I1 = 1.7 × 104,
I2 = 3.7 × 104, I3 = 5.4 × 104. The initial angular velocity is ω0 = [15,−15, 15]T and Q(0)

is the 3 × 3 identity matrix. (a) Body frame Qe3, h = 0.1, MR. (b) Relative energy error MR,
h = 0.1. (c) Body frame Qe3, h = 0.1, SEJ. (d ) Relative energy error SEJ, h = 0.1. (e) Body
frame Qe3, h = 0.1, SEJ4. ( f ) Relative energy error SEJ4, h = 0.1.

step size h = 0.01. In figure 6 we report on the y-axis the average absolute value of the energy
error

1

N

N∑
n=1

|H − Hn|,
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Figure 8. Plot of Qe3 and the relative energy error for the satellite simulation. Integration on the
interval [0, 400], using the methods MR, SEJ and SEJ4 (SEJ with a Magnus method of order 4
for the rotation matrix Q). The principal moments of inertia are I1 = 1.7 × 104, I2 = 3.7 × 104,
I3 = 5.4 × 104. The initial angular velocity is ω0 = [15,−15, 15]T and Q(0) is the 3 × 3
identity matrix. (a) Body frame Qe3, h = 0.05, MR. (b) Relative energy error MR, h = 0.05.
(c) Body frame Qe3, h = 0.05, SEJ. (d) Relative energy error SEJ, h = 0.05. (e) Body frame
Qe3, h = 0.05, SEJ4. ( f ) Relative energy error SEJ4, h = 0.05.

with Hn the value of the numerical energy for the methods at time step n and H the exact
energy value, and N = 10/0.01 = 1000. On the x-axis we report the value of a parameter α

used for varying the initial angular velocity ω0 = α[1, 2, 3]T , with fixed principal moments of
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inertia I1 = 1, I2 = 2, I3 = 3, figure 6(a). In figure 6(b) α is instead used to vary the principal
moments of inertia I1 = α, I2 = 2α, I3 = 3α while keeping ω0 = [1, 2, 3]T fixed. From the
two plots in figure 6 it appears that the energy error for the SEJ method is smaller compared
to the MR method in some cases. This happens when the angular velocity or inertia is large,
i.e. when the external torque is relatively small compared to the momentum.

4.3. Satellite experiments

Assume µ and r are given constants and the potential energy is given by

V (Q) = 3
µ

2r3
(Qe3)

T T Qe3,

where T is the inertia tensor and Qe3 is the third column of Q. The torque f (Q) in
equation (5) is here given by

f (Q) = 3
µ

r3
(Qe3) × (T Qe3).

This test problem is a simplified version of the model describing the motion of a satellite in a
circular orbit of radius r around the earth, [11]. In our test problem the energy is preserved.
We take µ = GM where G is the gravitational constant and M is the mass of the earth.

Recall that we indicate with SEJ4 the second-order symmetric splitting method where
the rotation matrix Q is approximated with a Magnus method of order 4, while for the SEJ
method the rotation matrix Q is approximated with a second-order Magnus method as in (9).

In the first experiment on the satellite model we compare the methods MR, SEJ and SEJ4.
The inertia moments are chosen to be

I1 = 1.7 × 104, I2 = 3.7 × 104, I3 = 5.4 × 104,

the initial condition for the angular velocity is

ω0 = [15,−15, 15]T ,

and Q(0) = I (the identity matrix). Similar values are considered for tests performed in [16].
We have µ = GM = 3.986 × 1014, r = 1.5 × 105. We integrate on the interval [0, 400]
for two different step sizes h = 0.1 and h = 0.05. In figure 7, the step size is h = 0.1.
Figures 7(a), (c) and (e) in the left column show the trajectory described by the vector Qe3.
The method SEJ4 gives the best results.

In the right column of figure 7, the energy error for the three methods is presented. Both
SEJ and SEJ4 preserve the energy much better than the MR method.

In figure 8, the step size is h = 0.05. Here the three different methods perform similarly.
Also in this case the SEJ methods give better energy preservation compared to MR.

In some of the presented experiments we have considered different orderings of the
elementary flows which define the MR methods, this has not given significant differences in
the results. An analysis of how different compositions of the flows can influence the size of
the energy error can be found in [6]. We do not exclude that appropriate orderings of the flows
can give improved performance for the MR splitting in some cases.

5. Conclusions

In this paper we presented a symmetric splitting method for the integration of rigid body
problems subject to external forces. The numerical strategy is based on the use of available
efficient algorithms for the computation of Jacobi elliptic functions. We compared the method
with a similar symplectic splitting method of [18] and [5]. In many of the performed
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experiments the presented symmetric splitting is more efficient than the symplectic splitting.
Moreover, the new method presents in many experiments a better energy conservation. This
happens especially for problems where the principal moments of inertia are of large size.
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